Influences and drivers of woody debris movement in urban watercourses

Author:

Allen Deonie,Arthur Scott,Haynes Heather,Wallis Stephen G.,Wallerstein Nicholas

Abstract

Abstract It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding. To date, debris transport analysis has focused on regional fluvial systems and large woody debris, both in flume and field experiments. Given the social and economic risk associated with urban flooding, and as urban drainage design shifts away from subsurface piped network reliance, there is an increasing need to understand debris movement in urban watercourses. The prediction of urban watercourse small woody debris (SWD) movement, both quantity and risk, has undergone only limited analysis predominantly due to lack of field data. This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses. The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis. Passive integrated transponder (PIT) technology provides a method to collect debris transport data within the urban environment. In this study, the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time. SWD velocity and detention are collated with solute time of travel, watercourse and point flow characteristics to identify the relationships between these key variables. The work presented tests three hypotheses: firstly, that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level. Secondly, that SWD travel distance, and the resistance forces along this travel path, influence SWD transport potential. Thirdly, the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3