Common chironomids drive the biodiversity–temperature relationship during the Younger Dryas-Holocene transition in a southern Baltic coastal lake

Author:

de Mendoza GuillermoORCID,Kotrys BartoszORCID,Płóciennik MateuszORCID,Sydor PawełORCID,Okupny DanielORCID

Abstract

AbstractThe Younger Dryas-Holocene transition represents a period of significant thermal change, comparable in magnitude to modern warming, yet in a colder context and without the effect of anthropogenic disturbance. This is useful as a reference to tackle how biodiversity is affected by temperature in natural conditions. Here, we addressed the thermal change during this period in a southern Baltic coastal lake (Konarzewo Lake, Poland), as inferred by chironomid remains. We evaluated changes in chironomid communities and used Hill numbers to explore how commonness and rarity underlie biodiversity changes attributable to warming. We found evidence of warming at Konarzewo Lake during the Younger Dryas-Holocene transition, with inferred temperatures in the Younger Dryas period supporting the NW–SE gradient in Younger Dryas summer temperatures across Europe. Chironomid communities drastically changed during the thermal transition. However, Hill numbers showed no response to temperature when rare morphotypes were emphasized (order q = 0) or a weak response when they were balanced with common morphotypes (order q = 1). Hill number of order q = 2, emphasizing the most common morphotypes, consistently increased with temperature across different sample sizes or coverages. This illustrates how common morphotypes, rather than the rare ones, may boost biodiversity facing warming.

Funder

Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy

Narodowa Agencja Wymiany Akademickiej

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3