Abstract
AbstractTemporary streams are submitted to high seasonal hydrological variations which induce habitat fragmentation. Global change promotes longer non-flow periods, affecting hydrological continuity and the distribution of biological assemblages in river networks. We aimed to investigate the effects of hydrological discontinuity on phototrophic biofilm assemblages in a Mediterranean stream, at both network and habitat scales. At the network scale during basal flow conditions, mostly nitrate and DOC concentrations were associated to the taxonomical and trait distribution of algae and cyanobacterial assemblages. Cyanobacteria dominated at the upstream and downstream sites of the network, while green algae and diatoms were abundant in its middle part. At the habitat scale, hydrological discontinuity promoted large changes in biofilm composition between riffles and pools, where pools were inhabited preferentially by green algae and riffle habitats by cyanobacteria. Our findings emphasize the myriad of factors affecting the spatial distribution of phototrophic biofilms, which become more heterogeneous according to water flow interruption. Under the predicted climate change scenarios, spatial heterogeneity in temporary streams may increase, which will lead to change phototrophic biofilm assemblages.
Funder
Ministry of Science and Technology
Erasmus+
Agencia Estatal de Investigación
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献