QRev: migrating quantum code towards hybrid information systems

Author:

Pérez-Castillo RicardoORCID,Jiménez-Navajas Luis,Piattini Mario

Abstract

AbstractQuantum computing is now a reality, and its incomparable computational power has led companies to show a great interest in being able to work with quantum software in order to support part of their current and future business operations. However, the quantum computing paradigm differs significantly from its classical counterparts, which has brought about the need to revolutionise how the future software is designed, built, and operated in order to work with quantum computers. Since companies cannot discard all their current (and probably mission-critical) information systems, they must adapt their classical information systems to new specific quantum applications, thus evolving towards hybrid information systems. Unfortunately, there are no specific methods with which to deal with this challenge. We believe that reengineering, and more specifically, software modernisation using model-driven engineering principles, could be useful as regard migrating classical systems and existing quantum programs towards hybrid information systems. This paper, therefore, presents QRev, a reverse engineering tool that analyses quantum programs developed in Q# in order to identify its components and interrelationships, and then generates abstract models that can be used in software modernisation processes. The platform-independent models are generated according to the Knowledge Discovery Metamodel (KDM) standard. QRev is validated in a case study involving five quantum programs in order to demonstrate its effectiveness and scalability. The main implication of the study is that QRev can be used in order to attain KDM models, which can subsequently be employed to restructure or add new quantum functionality at a higher abstraction level, i.e. independently of the specific quantum technology.

Funder

Ministerio de Ciencia e Innovación

cdti missions programme (center for the development of industrial technology of the ministry of science and innovation of spain) and feder

Universidad de Castilla la Mancha

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Software

Reference53 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The quantum frontier of software engineering: A systematic mapping study;Information and Software Technology;2024-11

2. Quantum Software Engineering: Practical Challenges;International Journal of Software Engineering and Knowledge Engineering;2024-08-30

3. Model-Driven Approaches for Reverse Engineering—A Systematic Literature Review;IEEE Access;2024

4. Dynamic analysis of quantum annealing programs;Journal of Systems and Software;2023-07

5. Reverse Engineering of Hamiltonian Expressions from D-Wave programs;2022 IEEE International Conference on Quantum Software (QSW);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3