1. Aha, D. W. (1997). Lazy learning. Norwell, MA: Kluwer.
2. Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 1573–0565.
3. Arbel, R., & Rokach, L. (2006). Classifier evaluation under limited resources. Pattern Recognition Letters, 27(14), 1619–1631.
4. Barandela, R., Valdovinos, R. M., Sánchez, S. J., & Ferri, F. J. (2004). The imbalanced training sample problem: Under or over sampling?. In Joint IAPR international workshops on structural, syntactic, and statistical pattern recognition (SSPR/SPR’04). Lecture notes in computer science (Vol. 3138, pp. 806–814).
5. Chawla, N. V. (2003). C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In Proceedings of the twentieth international conference on machine learning: Workshop on learning from imbalanced datasets II. Washington, DC.