Two-Speed Deep-Learning Ensemble for Classification of Incremental Land-Cover Satellite Image Patches

Author:

Horry Michael James,Chakraborty SubrataORCID,Pradhan Biswajeet,Shulka Nagesh,Almazroui Mansour

Abstract

AbstractHigh-velocity data streams present a challenge to deep learning-based computer vision models due to the resources needed to retrain for new incremental data. This study presents a novel staggered training approach using an ensemble model comprising the following: (i) a resource-intensive high-accuracy vision transformer; and (ii) a fast training, but less accurate, low parameter-count convolutional neural network. The vision transformer provides a scalable and accurate base model. A convolutional neural network (CNN) quickly incorporates new data into the ensemble model. Incremental data are simulated by dividing the very large So2Sat LCZ42 satellite image dataset into four intervals. The CNN is trained every interval and the vision transformer trained every half interval. We call this combination of a complementary ensemble with staggered training a “two-speed” network. The novelty of this approach is in the use of a staggered training schedule that allows the ensemble model to efficiently incorporate new data by retraining the high-speed CNN in advance of the resource-intensive vision transformer, thereby allowing for stable continuous improvement of the ensemble. Additionally, the ensemble models for each data increment out-perform each of the component models, with best accuracy of 65% against a holdout test partition of the RGB version of the So2Sat dataset.

Funder

Defence Australia

University of New England

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Economic Geology,Geology,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3