Image quality evaluation of real low-dose breast PET

Author:

Satoh YokoORCID,Imai Masamichi,Ikegawa Chihiro,Onishi Hiroshi

Abstract

Abstract Purpose To evaluate the clinical feasibility of high-resolution dedicated breast positron emission tomography (dbPET) with real low-dose 18F-2-fluorodeoxy-d-glucose (18F-FDG) by comparing images acquired with full-dose FDG. Materials and methods Nine women with no history of breast cancer and previously scanned by dbPET injected with a clinical 18F-FDG dose (3 MBq/kg) were enrolled. They were injected with 50% of the clinical 18F-FDG dose and scanned with dbPET for 10 min for each breast 60 and 90 min after injection. To investigate the effect of the scan start time and acquisition time on image quality, list-mode data were divided into 1, 3, 5, and 7 min (and 10 min with 50% FDG injected) from the start of acquisition and reconstructed. The reconstructed images were visually and quantitatively compared for contrast between mammary gland and fat (contrast) and for coefficient of variation (CV) in the mammary gland. Results In visual evaluation, the contrast between the mammary gland and fat acquired at a 50% dose for 7 min was comparable and even better in smoothness than that in the images acquired at a 100% dose. No visual difference between the images with a 50% dose was found with scan start times 60 and 90 min after injection. Quantitative evaluation showed a slightly lower contrast in the image at 60 min after 50% dosing, with no difference between acquisition times. There was no difference in CV between conditions; however, smoothness decreased with shorter acquisition time in all conditions. Conclusions The quality of dbPET images with a 50% FDG dose was high enough for clinical application. Although the optimal scan start time for improved lesion-to-background mammary gland contrast remained unknown in this study, it will be clarified in future studies of breast cancer patients.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3