Sparse quantum Gaussian processes to counter the curse of dimensionality

Author:

Kuś Gaweł I.,van der Zwaag Sybrand,Bessa Miguel A.ORCID

Abstract

AbstractGaussian processes are well-established Bayesian machine learning algorithms with significant merits, despite a strong limitation: lack of scalability. Clever solutions address this issue by inducing sparsity through low-rank approximations, often based on the Nystrom method. Here, we propose a different method to achieve better scalability and higher accuracy using quantum computing, outperforming classical Bayesian neural networks for large datasets significantly. Unlike other approaches to quantum machine learning, the computationally expensive linear algebra operations are not just replaced with their quantum counterparts. Instead, we start from a recent study that proposed a quantum circuit for implementing quantum Gaussian processes and then we use quantum phase estimation to induce a low-rank approximation analogous to that in classical sparse Gaussian processes. We provide evidence through numerical tests, mathematical error bound estimation, and complexity analysis that the method can address the “curse of dimensionality,” where each additional input parameter no longer leads to an exponential growth of the computational cost. This is also demonstrated by applying the algorithm in a practical setting and using it in the data-driven design of a recently proposed metamaterial. The algorithm, however, requires significant quantum computing hardware improvements before quantum advantage can be achieved.

Funder

European Space Agency

Publisher

Springer Science and Business Media LLC

Subject

General Arts and Humanities

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3