Quantum density peak clustering

Author:

Magano Duarte,Buffoni Lorenzo,Omar Yasser

Abstract

AbstractClustering algorithms are of fundamental importance when dealing with large unstructured datasets and discovering new patterns and correlations therein, with applications ranging from scientific research to medical imaging and marketing analysis. In this work, we introduce a quantum version of the density peak clustering algorithm, built upon a quantum routine for minimum finding. We prove a quantum speedup for a decision version of density peak clustering depending on the structure of the dataset. Specifically, the speedup is dependent on the heights of the trees of the induced graph of nearest-highers, i.e. the graph of connections to the nearest elements with higher density. We discuss this condition, showing that our algorithm is particularly suitable for high-dimensional datasets. Finally, we benchmark our proposal with a toy problem on a real quantum device.

Funder

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Reference50 articles.

1. Adcock J., Allen E., Day M., Frick S., Hinchliff J., Johnson M., Morley-Short S., Pallister S., Price A., Stanisic S. (2015) Advances in quantum machine learning. arXiv:1512.02900, [quant-ph]

2. Aïmeur E., Brassard G., Gambs S. (2007). In: ACM International Conference Proceeding Series, vol 227, (1). https://doi.org/10.1145/1273496.1273497https://doi.org/10.1145/1273496.1273497

3. Aïmeur E., Brassard G., Gambs S. (2013) . Mach Learn 90:261. https://doi.org/10.1007/s10994-012-5316-5

4. Ambainis A. (2017) Understanding quantum algorithms via query complexity. arXiv:1712.06349 [quant-ph]

5. Arunachalam S., de Wolf R. (2017) . arXiv:1701.06806, [quant-ph]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Leap;Advances in Logistics, Operations, and Management Science;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3