Distributed quantum neural networks via partitioned features encoding

Author:

Kawase Yoshiaki

Abstract

AbstractQuantum neural networks are expected to be a promising application in near-term quantum computing, but face challenges such as vanishing gradients during optimization and limited expressibility by a limited number of qubits and shallow circuits. To mitigate these challenges, an approach using distributed quantum neural networks has been proposed to make a prediction by approximating outputs of a large circuit using multiple small circuits. However, the approximation of a large circuit requires an exponential number of small circuit evaluations. Here, we instead propose to distribute partitioned features over multiple small quantum neural networks and use the ensemble of their expectation values to generate predictions. To verify our distributed approach, we demonstrate ten class classification of the Semeion and MNIST handwritten digit datasets. The results of the Semeion dataset imply that while our distributed approach may outperform a single quantum neural network in classification performance, excessive partitioning reduces performance. Nevertheless, for the MNIST dataset, we succeeded in ten class classification with exceeding 96% accuracy. Our proposed method not only achieved highly accurate predictions for a large dataset but also reduced the hardware requirements for each quantum neural network compared to a large single quantum neural network. Our results highlight distributed quantum neural networks as a promising direction for practical quantum machine learning algorithms compatible with near-term quantum devices. We hope that our approach is useful for exploring quantum machine learning applications.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S (2021) The power of quantum neural networks. Nat Comput Scie 1(6):403–409

2. Bravyi S, Smith G, Smolin JA (2016) Trading classical and quantum computational resources. Phys Rev X 6(2):021043

3. Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2021) Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat Commun 12(1):1791

4. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L et al (2021) Variational quantum algorithms. Nature Reviews. Physics 3(9):625–644

5. Du Y, Qian Y, Tao D (2021)Accelerating variational quantum algorithms with multiple quantum processors. arXiv:2106.12819

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3