Abstract
AbstractThe Cauchy problem in $${\mathbb {R}}^n$$
R
n
, $$n\ge 1$$
n
≥
1
, for the parabolic equation $$\begin{aligned} u_t=u^p \Delta u \qquad \qquad (\star ) \end{aligned}$$
u
t
=
u
p
Δ
u
(
⋆
)
is considered in the strongly degenerate regime $$p\ge 1$$
p
≥
1
. The focus is firstly on the case of positive continuous and bounded initial data, in which it is known that a minimal positive classical solution exists, and that this solution satisfies $$\begin{aligned} t^\frac{1}{p}\Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \rightarrow \infty \quad \hbox {as } t\rightarrow \infty . \end{aligned}$$
t
1
p
‖
u
(
·
,
t
)
‖
L
∞
(
R
n
)
→
∞
as
t
→
∞
.
The first result of this study complements this by asserting that given any positive $$f\in C^0([0,\infty ))$$
f
∈
C
0
(
[
0
,
∞
)
)
fulfilling $$f(t)\rightarrow +\infty $$
f
(
t
)
→
+
∞
as $$t\rightarrow \infty $$
t
→
∞
one can find a positive nondecreasing function $$\phi \in C^0([0,\infty ))$$
ϕ
∈
C
0
(
[
0
,
∞
)
)
such that whenever $$u_0\in C^0({\mathbb {R}}^n)$$
u
0
∈
C
0
(
R
n
)
is radially symmetric with $$0< u_0 < \phi (|\cdot |)$$
0
<
u
0
<
ϕ
(
|
·
|
)
, the corresponding minimal solution u satisfies $$\begin{aligned} \frac{t^\frac{1}{p}\Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)}}{f(t)} \rightarrow 0 \quad \hbox {as } t\rightarrow \infty . \end{aligned}$$
t
1
p
‖
u
(
·
,
t
)
‖
L
∞
(
R
n
)
f
(
t
)
→
0
as
t
→
∞
.
Secondly, ($$\star $$
⋆
) is considered along with initial conditions involving nonnegative but not necessarily strictly positive bounded and continuous initial data $$u_0$$
u
0
. It is shown that if the connected components of $$\{u_0>0\}$$
{
u
0
>
0
}
comply with a condition reflecting some uniform boundedness property, then a corresponding uniquely determined continuous weak solution to ($$\star $$
⋆
) satisfies $$\begin{aligned} 0< \liminf _{t\rightarrow \infty } \Big \{ t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \Big \} \le \limsup _{t\rightarrow \infty } \Big \{ t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \Big \} <\infty . \end{aligned}$$
0
<
lim inf
t
→
∞
{
t
1
p
‖
u
(
·
,
t
)
‖
L
∞
(
R
n
)
}
≤
lim sup
t
→
∞
{
t
1
p
‖
u
(
·
,
t
)
‖
L
∞
(
R
n
)
}
<
∞
.
Under a somewhat complementary hypothesis, particularly fulfilled if $$\{u_0>0\}$$
{
u
0
>
0
}
contains components with arbitrarily small principal eigenvalues of the associated Dirichlet Laplacian, it is finally seen that (0.1) continues to hold also for such not everywhere positive weak solutions.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Aronson, D.G.: The porous medium equation. In: Fasano A., Primicerio, M. (eds.) Nonlinear Diffusion Problems. Lect. Notes Math., vol. 1224, pp. 1–46. Springer, New York (1986)
2. Aronson, D.G., Caffarelli, L.A., Kamin, S.: How an initially stationary interface begins to move in porous medium flow. SIAM J. Math. Anal. 14, 639–658 (1983)
3. Barenblatt, G.I.: On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Mat. Meh. 16, 67–78 (1952)
4. Bertsch, M., Dal Passo, R., Ughi, M.: Discontinuous “viscosity” solutions of a degenerate parabolic equation. Trans. Am. Math. Soc. 320, 779–798 (1990)
5. Bertsch, M., Peletier, L.A.: A positivity property of solutions of nonlinear diffusion equations. J. Differ. Equ. 53, 30–47 (1984)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献