Approaching Critical Decay in a Strongly Degenerate Parabolic Equation

Author:

Winkler Michael

Abstract

AbstractThe Cauchy problem in $${\mathbb {R}}^n$$ R n , $$n\ge 1$$ n 1 , for the parabolic equation $$\begin{aligned} u_t=u^p \Delta u \qquad \qquad (\star ) \end{aligned}$$ u t = u p Δ u ( ) is considered in the strongly degenerate regime $$p\ge 1$$ p 1 . The focus is firstly on the case of positive continuous and bounded initial data, in which it is known that a minimal positive classical solution exists, and that this solution satisfies $$\begin{aligned} t^\frac{1}{p}\Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \rightarrow \infty \quad \hbox {as } t\rightarrow \infty . \end{aligned}$$ t 1 p u ( · , t ) L ( R n ) as t . The first result of this study complements this by asserting that given any positive $$f\in C^0([0,\infty ))$$ f C 0 ( [ 0 , ) ) fulfilling $$f(t)\rightarrow +\infty $$ f ( t ) + as $$t\rightarrow \infty $$ t one can find a positive nondecreasing function $$\phi \in C^0([0,\infty ))$$ ϕ C 0 ( [ 0 , ) ) such that whenever $$u_0\in C^0({\mathbb {R}}^n)$$ u 0 C 0 ( R n ) is radially symmetric with $$0< u_0 < \phi (|\cdot |)$$ 0 < u 0 < ϕ ( | · | ) , the corresponding minimal solution u satisfies $$\begin{aligned} \frac{t^\frac{1}{p}\Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)}}{f(t)} \rightarrow 0 \quad \hbox {as } t\rightarrow \infty . \end{aligned}$$ t 1 p u ( · , t ) L ( R n ) f ( t ) 0 as t . Secondly, ($$\star $$ ) is considered along with initial conditions involving nonnegative but not necessarily strictly positive bounded and continuous initial data $$u_0$$ u 0 . It is shown that if the connected components of $$\{u_0>0\}$$ { u 0 > 0 } comply with a condition reflecting some uniform boundedness property, then a corresponding uniquely determined continuous weak solution to ($$\star $$ ) satisfies $$\begin{aligned} 0< \liminf _{t\rightarrow \infty } \Big \{ t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \Big \} \le \limsup _{t\rightarrow \infty } \Big \{ t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty ({\mathbb {R}}^n)} \Big \} <\infty . \end{aligned}$$ 0 < lim inf t { t 1 p u ( · , t ) L ( R n ) } lim sup t { t 1 p u ( · , t ) L ( R n ) } < . Under a somewhat complementary hypothesis, particularly fulfilled if $$\{u_0>0\}$$ { u 0 > 0 } contains components with arbitrarily small principal eigenvalues of the associated Dirichlet Laplacian, it is finally seen that (0.1) continues to hold also for such not everywhere positive weak solutions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Analysis

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oscillatory decay in a degenerate parabolic equation;Partial Differential Equations and Applications;2022-07-06

2. Correction to: Approaching Critical Decay in a Strongly Degenerate Parabolic Equation;Journal of Dynamics and Differential Equations;2021-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3