Jet radiation in a longitudinally expanding medium

Author:

Caucal P.,Iancu E.,Soyez G.

Abstract

Abstract In a series of previous papers, we have presented a new approach, based on perturbative QCD, for the evolution of a jet in a dense quark-gluon plasma. In the original formulation, the plasma was assumed to be homogeneous and static. In this work, we extend our description and its Monte Carlo implementation to a plasma obeying Bjorken longitudinal expansion. Our key observation is that the factorisation between vacuum-like and medium-induced emissions, derived in the static case, still holds for an expanding medium, albeit with modified rates for medium-induced emissions and transverse momentum broadening, and with a modified phase-space for vacuum-like emissions. We highlight a scaling relation valid for the energy spectrum of medium-induced emissions, through which the case of an expanding medium is mapped onto an effective static medium. We find that scaling violations due to vacuum-like emissions and transverse momentum broadening are numerically small. Our new predictions for the nuclear modification factor for jets RAA, the in-medium fragmentation functions, and substructure distributions are very similar to our previous estimates for a static medium, maintaining the overall good qualitative agreement with existing LHC measurements. In the case of RAA, we find that the agreement with the data is significantly improved at large transverse momenta pT ≳ 500 GeV after including the effects of the nuclear parton distribution functions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jet angularities in dijet production in proton-proton and heavy-ion collisions at RHIC;Journal of High Energy Physics;2024-07-24

2. Isolating perturbative QCD splittings in heavy-ion collisions;Physical Review D;2024-07-10

3. Jet substructure;International Journal of Modern Physics E;2024-07

4. Medium-Enhanced cc¯ Radiation;Physical Review Letters;2024-05-21

5. Probing the path-length dependence of parton energy loss via scaling properties in heavy ion collisions;Physical Review D;2024-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3