Abstract
AbstractThis paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.
Funder
Dirección General de Universidades e Investigación
Universidad Complutense de Madrid
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Alama, S., Tarantello, G.: On semilinear elliptic problems with indefinite nonlinearities. Cal. Var. 1, 439–475 (1993)
2. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York (2011)
3. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)
4. Brézis, H., Nirenberg, L.: $$H^1$$ versus $$C^1$$ local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317(5), 465–472 (1993)
5. Castro, A., Pardo, R.: A priori bounds for Positive Solutions of Subcritical Elliptic Equations. Revista Matemática Complutense 28, 715–731 (2015)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献