Abstract
AbstractReproduction in young females can show a particularly sensitive response to environmental challenges, although empirical support from individual-based long-term studies is scarce. Based on a 20-year data set from a free-roaming Przewalski’s horse population (Equus ferus przewalskii), we studied effects of large-herbivore density (horses + cattle) and weather conditions experienced during different life stages on females’ annual birth rates. Foaling probability was very low in 2-year-olds, reaching maximum values in 5 to 10-year-olds, followed by a decrease in older females indicating reproductive senescence. Mother’s previous reproductive investment affected her current reproduction; young and old mothers (as opposed to middle-aged ones), which had nursed a foal for at least 60 days during the previous year, reproduced with a lower probability. Foaling probability and body condition of young females were lower when large-herbivore density was high. Reproduction was also influenced by interactive weather effects during different life stages. Low late-summer precipitation during the females’ year of birth was associated with a pronounced decrease in foaling probability in response to harsh late-winter temperatures prior to the mating season. In turn, increased amounts of late-summer rain during this early age together with more late-summer rain during the females’ current pregnancy led to an increased reproductive probability in 2–3-year-olds. These results were corroborated by the ameliorating effects of late-summer rain on body condition in such females. In conclusion, our findings highlight the interactive importance of weather conditions experienced during early life, and of density and weather during current pregnancy on foaling probability, particularly in young females.
Funder
National Research, Development and Innovation Office
University of Debrecen
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献