Clinal variation in investment into reproduction versus maintenance suggests a ‘pace-of-life’ syndrome in a widespread butterfly

Author:

Günter FranziskaORCID,Beaulieu Michaël,Franke Kristin,Toshkova Nia,Fischer Klaus

Abstract

AbstractExtreme weather events such as heat waves are predicted to increase in the course of anthropogenic climate change. Widespread species are exposed to a variety of environmental conditions throughout their distribution range, often resulting in local adaptation. Consequently, populations from different regions may vary in their capacity to deal with challenging conditions such as thermal stress. In this study, we investigated clinal variation in body size, fecundity, and oxidative markers along a pan-European latitudinal gradient in the green-veined white butterfly Pieris napi, and additionally gene expression in German individuals. We exposed butterflies from replicated Italian, German, and Swedish populations to cold, control, or hot temperatures for 24 h. Under hot conditions, molecular chaperones were up-regulated, while oxidative damage remained unaffected and levels of the antioxidant glutathione (GSH) were reduced under cold and hot conditions. Thus, the short-term exposure to heat stress did not substantially affect oxidative balance. Moreover, we found decreased body size and fecundity in cooler compared with warmer regions. Interestingly, oxidative damage was lowest in Swedish animals exhibiting (1) high levels of GSH, (2) low early fecundity, and (3) low larval growth rates. These results suggest that Swedish butterflies have a slower life style and invest more strongly into maintenance, while those from warmer regions show the opposite pattern, which may reflect a ‘pace-of-life’ syndrome.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3