Legacy effects of herbivory on treeline dynamics along an elevational gradient

Author:

Mienna Ida M.ORCID,Austrheim Gunnar,Klanderud Kari,Bollandsås Ole Martin,Speed James D. M.

Abstract

AbstractTreelines are expected to expand into alpine ecosystems with global warming, but herbivory may delay this expansion. This study quantifies long-term effects of temporally varying sheep densities on birch recruitment and growth in the treeline ecotone. We examined treeline ecotone successional trajectories and legacy effects in a replicated experimental setup, where enclosures were present for 14 years with three different sheep densities (0, 25, 80 sheep km−2). Before and after the enclosures were present, the site had an ambient sheep density of 20–25 km−2. We sampled field data 4 years after enclosure removal and compared these to data sampled 8 and 9 years after enclosure erection. We sampled data on birch browsing pressure, birch distribution across life-stages (recruits, saplings, and mature trees), and birch annual radial growth. Fourteen years of increased or decreased sheep density had observable legacy effects depending on birch life-stage. Birch recruit prevalence decreased in areas, where sheep were reintroduced after being absent for 14 years. For the same areas, sapling and mature tree prevalence increased, indicating that these areas have entered alternative successional trajectories compared to areas, where sheep were present the whole time. Birch annual radial growth showed a lag effect of 2 years after enclosure removal, with growth decreasing in areas where sheep had been absent for 14 years and increasing where sheep densities were high. Thus, decadal-scale absences of herbivores can leave legacy effects due to increased numbers of trees that have high resistance to later-introduced herbivore browsing.

Funder

The Research Council of Norway

Norwegian University of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3