Anionic polyacrylamide influence on the lead(II) ion accumulation in soil – the study on montmorillonite

Author:

Fijałkowska G.,Szewczuk-Karpisz K.,Wiśniewska M.

Abstract

Abstract Purpose Polymeric substances, as soil conditioners, limit the erosion process as well as improve the soil structure. The same macromolecular compounds may influence the heavy metal accumulation in soil environment. The main aim of this study was investigation of anionic polyacrylamide (AN PAM) effect on the lead(II) ion sorption on the montmorillonite surface. The effects of Pb(II) ion concentration, sequence of heavy metal and anionic polymer addition into the system as well as anionic group content in the PAM macromolecules were also studied. Materials and methods The study was performed on montmorillonite (clay mineral). Two types of polymers were used: AN PAM 5% and AN PAM 30% containing 5% and 30% of carboxylic groups, respectively. The adsorbed amounts of Pb(II) ions or AN PAM on the solid were determined spectrophotometrically. Electrokinetic properties of the examined systems were established using potentiometric titration and microelectrophoresis method. The montmorillonite aggregation without and with selected substances was described based on the sedimentation study. Results At pH 5 the Pb(II) adsorbed amount on montmorillonite equaled 0.05 mg/m2 (for the initial concentration 10 ppm). Anionic polyacrylamide increased this value significantly (it was 0.11 mg/m2 with AN PAM 5% and 0.11 mg/m2 with AN PAM 30%). The lead(II) ions presence causes a slight increase of the anionic PAM adsorption on the montmorillonite surface. For example, for the initial polymer concentration 100 ppm, the AN PAM 5% adsorbed amount without Pb(II) equaled 0.49 mg/m2, whereas with Pb(II) – 0.57 mg/m2. What is more, anionic polyacrylamide and lead(II) ions affected electrokinetic properties and stability of the montmorillonite suspension. Conclusions Anionic polyacrylamide makes the Pb(II) accumulation on the montmorillonite surface larger and, as a consequence, reduces the Pb(II) availability to organisms. Therefore, this macromolecular compound can certainly be used to remediate soils contaminated with heavy metals.

Funder

Institute of Agrophysics PAS

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3