Multi-Spacecraft Observations of an Interplanetary Coronal Mass Ejection Interacting with Two Solar-Wind Regimes Observed by the Ulysses and Twin-STEREO Spacecraft

Author:

Maunder Megan L.ORCID,Foullon Claire,Forsyth Robert,Barnes David,Davies Jackie

Abstract

AbstractWe present a combined study of a coronal mass ejection (CME), revealed in a unique orbital configuration that permits the analysis of remote-sensing observations on 27 June 2007 from the twin Solar Terrestrial Relations Observatory (STEREO)-A and -B spacecraft and of its subsequent in situ counterpart outside the ecliptic plane, the interplanetary coronal mass ejection (ICME) observed on 04 July 2007 by Ulysses at 1.5 AU and heliographic-Earth-ecliptic coordinates system (HEE) 33° latitude and 49° longitude. We apply a triangulation method to the STEREO Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) COR2 coronagraph images of the CME, and a self-similar expansion fitting method to STEREO/SECCHI Heliospheric Imager (HI)-B. At Ulysses we observe: a preceding forward shock, followed by a sheath region, a magnetic cloud, a rear forward shock, followed by a compression region due to a succeeding high-speed stream (HSS) interacting with the ICME. From a minimum variance analysis (MVA) and a length-scale analysis we infer that the magnetic cloud at Ulysses, with a duration of 24 h, has a west-north-east configuration, length scale of ≈0.2 AU, and mean expansion speed of 14.2 km s−1. The relatively small size of this ICME is likely to be a result of its interaction with the succeeding HSS. This ICME differs from the previously known over-expanding types observed by Ulysses, in that it straddles a region between the slow and fast solar wind that in itself drives the rear shock. We describe the agreements and limitations of these observations in comparison with 3D magneto-hydrodynamic (MHD) heliospheric simulations of the ICME in the context of a complex solar-wind environment.

Funder

science and technology facilities council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3