On the Radial and Longitudinal Variation of a Magnetic Cloud: ACE, Wind, ARTEMIS and Juno Observations

Author:

Davies Emma E.ORCID,Forsyth Robert J.ORCID,Good Simon W.ORCID,Kilpua Emilia K. J.ORCID

Abstract

AbstractWe present observations of the same magnetic cloud made near Earth by the Advance Composition Explorer (ACE), Wind, and the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and THEMIS C spacecraft, and later by Juno at a distance of 1.2 AU. The spacecraft were close to radial alignment throughout the event, with a longitudinal separation of $3.6^{\circ}$ 3.6 between Juno and the spacecraft near Earth. The magnetic cloud likely originated from a filament eruption on 22 October 2011 at 00:05 UT, and caused a strong geomagnetic storm at Earth commencing on 24 October. Observations of the magnetic cloud at each spacecraft have been analysed using minimum variance analysis and two flux rope fitting models, Lundquist and Gold–Hoyle, to give the orientation of the flux rope axis. We explore the effect different trailing edge boundaries have on the results of each analysis method, and find a clear difference between the orientations of the flux rope axis at the near-Earth spacecraft and Juno, independent of the analysis method. The axial magnetic field strength and the radial width of the flux rope are calculated using both observations and fitting parameters and their relationship with heliocentric distance is investigated. Differences in results between the near-Earth spacecraft and Juno are attributed not only to the radial separation, but to the small longitudinal separation which resulted in a surprisingly large difference in the in situ observations between the spacecraft. This case study demonstrates the utility of Juno cruise data as a new opportunity to study magnetic clouds beyond 1 AU, and the need for caution in future radial alignment studies.

Funder

Science and Technology Facilities Council

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3