Monochromatic Two-Fluid Alfvén Waves in the Partially Ionised Solar Chromosphere

Author:

Kraskiewicz J.ORCID,Murawski K.,Zhang F.,Poedts S.

Abstract

AbstractWe present new results towards the explanation of the chromospheric-heating problem and the solar-wind origin, using a two-fluid model that takes into account the collisional interaction between ions (protons) and neutrals (hydrogen atoms). Our aim is to further reveal the mechanism behind chromospheric heating and plasma outflows. We simulate and analyse the propagation and evolution of Alfvén waves in the partially ionised solar chromosphere, consisting of ions + electrons and neutral fluids. The simplified model chromosphere is permeated by a vertical, uniform magnetic field. We perform numerical simulations in the framework of a quasi-1.5-dimensional (1.5D), two-fluid model in which Alfvén waves are excited by a harmonic driver in the transverse component of the ion and neutral velocities, operating in the chromosphere. In the case of a small-amplitude driver, Alfvén waves are weakly damped, and for the chosen wave periods of a few seconds, Alfvén waves manage to propagate through the chromosphere and enter the solar corona. Non-linear Alfvén waves excited by a large-amplitude driver cause significant chromospheric heating and plasma outflows. We thus conclude that two-fluid Alfvén waves with larger amplitudes can contribute to chromospheric heating and plasma outflows, which may result higher up in the solar-wind origin.

Funder

Narodowe Centrum Nauki

KU Leuven Internal Funds

C1 project Internal Funds KU Leuven

FWO-Vlaanderen

AFRL/USAF project

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimated electric conductivities of thermal plasma for air-fuel combustion and oxy-fuel combustion with potassium or cesium seeding;Heliyon;2024-06

2. Magnetohydrodynamic waves in the partially ionized solar plasma;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

3. Alfvén Waves in the Solar Atmosphere;Geophysical Monograph Series;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3