Travel Time Prediction in Real time for GPS Taxi Data Streams and its Applications to Travel Safety

Author:

Putatunda SayanORCID,Laha Arnab KumarORCID

Abstract

AbstractThe analysis of data streams offers a great opportunity for development of new methodologies and applications in the area of Intelligent Transportation Systems. In this paper, we propose two new incremental learning approaches for the travel time prediction problem for taxi GPS data streams in different scenarios and compare the same with three other existing methods. An extensive performance evaluation using four real life datasets indicate that when the training data size is small the Support Vector Regression method is the best choice considering both prediction accuracy and total computation time. However when the training data size is large to moderate then the Randomized K-Nearest Neighbor Regression with Spherical Distance (RKNNRSD) and the Incremental Polynomial Regression become the methods of choice. When continuous prediction of remaining travel time along the trajectory of a trip is considered we find that the RKNNRSD is the method of choice. A Real-time Speeding Alert System (RSAS) and a Driver Suspected Speeding Scorecard (DSSS) using the RKNNRSD method are proposed which have great potential for improving travel safety.

Publisher

Springer Science and Business Media LLC

Reference86 articles.

1. Aggarwal CC. Data streams: models and algorithms (advances in database systems). Secaucus: Springer-Verlag; 2006.

2. Archer J, Fotheringham N, Symmons M, Corben B. The impact of lowered speed limits in urban and metropolitan areas . Tech. Rep. 276, Monash University Accident Research Centre report 2008.

3. Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02, pp. 1–16. ACM, New York, NY, USA 2002. https://doi.org/10.1145/543613.543615

4. Bishop CM. Neural networks for pattern recognition. New York: Oxford University Press Inc; 1995.

5. Büttcher S, Clarke CLA, Cormack GV. Information retrieval: implementing and evaluating search engines. The MIT Press 2010. Isbn:0262026511, 9780262026512

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3