Semi-Riemannian manifolds with linear differential conditions on the curvature

Author:

Senovilla José M. M.

Abstract

AbstractSemi-Riemannian manifolds that satisfy (homogeneous) linear differential conditions of arbitrary order r on the curvature are analyzed. They include, in particular, the spaces with (rth-order) recurrent curvature, (rth-order) symmetric spaces, as well as entire new families of semi-Riemannian manifolds rarely, or never, considered before in the literature—such as the spaces whose derivative of the Riemann tensor field is recurrent, among many others. Definite proof that all types of such spaces do exist is provided by exhibiting explicit examples of all possibilities in all signatures, except in the Riemannian case with a positive definite metric. Several techniques of independent interest are collected and presented. Of special relevance is the case of Lorentzian manifolds, due to its connection to the physics of the gravitational field. This connection is discussed with particular emphasis on Gauss–Bonnet gravity and in relation with Penrose limits. Many new lines of research open up and a handful of conjectures, based on the results found hitherto, is put forward.

Funder

Universidad del País Vasco

Publisher

Springer Science and Business Media LLC

Reference64 articles.

1. Alekseevsky, D.V., Galaev, A.S.: Two-symmetric Lorentzian manifolds. J. Geom. Phys. 61(12), 2331–2340 (2011)

2. Åman, J.E.: Investigation of all Ricci semi-symmetric and all conformally semi-symmetric spacetimes. J. Phys. Conf. Ser. 314, 012020 (2011)

3. Beem, J.K., Ehrlich, P.E., Easley, K.W.: Global Lorentzian Geometry. Chapman & Hall/CRC Pure and Applied Mathematics. CRC Pres (1996)

4. Blanco, O.F.: Brinkmann and Lorentzian second-order symmetric spaces. Ph.D. Thesis, Universidad de Granada (UGR) (2013)

5. Blanco, O.F., Sánchez, M., Senovilla, J.M.M.: Complete classification of second-order symmetric spacetimes. J. Phys. Conf. Ser. 229, 012021 (2010)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recurrent Lorentzian Weyl Spaces;The Journal of Geometric Analysis;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3