The Funk–Radon transform for hyperplane sections through a common point

Author:

Quellmalz MichaelORCID

Abstract

AbstractThe Funk–Radon transform, also known as the spherical Radon transform, assigns to a function on the sphere its mean values along all great circles. Since its invention by Paul Funk in 1911, the Funk–Radon transform has been generalized to other families of circles as well as to higher dimensions. We are particularly interested in the following generalization: we consider the intersections of the sphere with hyperplanes containing a common point inside the sphere. If this point is the origin, this is the same as the aforementioned Funk–Radon transform. We give an injectivity result and a range characterization of this generalized Radon transform by finding a relation with the classical Funk–Radon transform.

Funder

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Algebra and Number Theory,Analysis

Reference30 articles.

1. Abouelaz, A., Daher, R.: Sur la transformation de Radon de la sphère $$S^d$$. Bull. Soc. Math. France 121(3), 353–382 (1993)

2. Agricola, I., Friedrich, T.: Global Analysis. Graduate Studies in Mathematics, vol. 52. American Mathematical Society, Providence, RI (2002)

3. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)

4. Daher, R.: Un théorème de support pour une transformation de Radon sur la sphère $$S^d$$. C. R. Acad. Sci. Paris 332(9), 795–798 (2001)

5. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI;Medical Image Analysis;2024-04

2. Sliced optimal transport on the sphere;Inverse Problems;2023-08-30

3. A Frame Decomposition of the Funk-Radon Transform;Lecture Notes in Computer Science;2023

4. A Radon transform on the cylinder;Journal of Mathematical Analysis and Applications;2022-08

5. Approximation Properties of the Double Fourier Sphere Method;Journal of Fourier Analysis and Applications;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3