Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance

Author:

Arganda Ernesto,Da Rold Leandro,Díaz Daniel A.,Medina Anibal D.ORCID

Abstract

Abstract Since the discovery in 2012 of the Higgs boson at the LHC, as the last missing piece of the Standard Model of particle physics, any hint of new physics has been intensively searched for, with no confirmation to date. There are however slight deviations from the SM that are worth investigating. The CMS collaboration has reported, in a search for heavy resonances decaying in t$$ \overline{t} $$ t ¯ with a 13-TeV center-of-mass energy and a luminosity of 35.9 fb1, deviations from the SM predictions at the 3.5σ level locally (1.9σ after the look-elsewhere effect). In addition, in the ditau final state search performed by the ATLAS collaboration at $$ \sqrt{s} $$ s = 13 TeV and $$ \mathcal{L} $$ L = 139 fb1, deviations from the SM at the 2σ level have been also observed. Interestingly, both slight excesses are compatible with a new pseudoscalar boson with a mass around 400 GeV that couples at least to fermions of the third generation and gluons. Starting from a purely phenomenological perspective, we inspect the possibility that a 400-GeV pseudoscalar can account for these deviations and at the same time satisfy the constraints on the rest of the channels that it gives contributions to and that are analyzed by the ATLAS and CMS experiments. After obtaining the range of effective couplings compatible with all experimental measurements, we study the gauge invariant UV completions that can give rise to this type of pseudoscalar resonance, which can be accommodated in an SO(6)/SO(5) model with consistency at the 1σ level and in a SO(5) × U(1)P × U(1)X/SO(4) × U(1)X at the 2σ level, while exceedingly large quartic couplings would be necessary to account for it in a general two Higgs doublet model.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference54 articles.

1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

3. CMS collaboration, Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 04 (2020) 171 [arXiv:1908.01115] [INSPIRE].

4. ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].

5. ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65 − −600 GeV with the ATLAS Detector in pp Collision Data at $$ \sqrt{s} $$ = 8 TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3