Author:
Ling Yi,Liu Yuxuan,Niu Chao,Xiao Yikang,Zhang Cheng-Yong
Abstract
Abstract
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the “difference” between two mixed states. Based on the subregion CV (Complexity equals Volume) conjecture and in the large size limit, we extract out three distinct stages during the evolution of HSC: the stage of linear growth at the early time, the stage of linear growth with a slightly small rate during the intermediate time and the stage of linear decrease at the late time. The growth rates of the first two stages are compared with the Lloyd bound. We find that with some choices of certain parameter, the Lloyd bound is always saturated at the early time, while at the intermediate stage, the growth rate is always less than the Lloyd bound. Moreover, the fact that the behavior of CV conjecture and its version of the subregion in Vaidya spacetime implies that they are different even in the large size limit.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference41 articles.
1. D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
2. A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].
3. M. Alishahiha, Holographic complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
4. D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE].
5. E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic subregion complexity for singular surfaces, Eur. Phys. J.C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献