Accretion of dissipative dark matter onto active galactic nuclei

Author:

Outmezguine Nadav JosephORCID,Slone Oren,Tangarife WalterORCID,Ubaldi Lorenzo,Volansky TomerORCID

Abstract

Abstract We examine the possibility that accretion of Dissipative Dark Matter (DDM) onto Active Galactic Nuclei (AGN) contributes to the growth rate of Super Massive Black Holes (SMBHs). Such a scenario could alleviate tension associated with anomalously large SMBHs measured at very early cosmic times, as well as observations that indicate that the growth of the most massive SMBHs occurs before z ∼ 6, with little growth at later times. These observations are not readily explained within standard AGN theory. We find a range in the parameter space of DDM models where we both expect efficient accretion to occur and which is consistent with observations of a large sample of measured SMBHs. When DDM accretion is included, the predicted evolution of this sample seems to be more consistent with assumptions regarding maximal BH seed masses and maximal AGN luminosities.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A dark matter probe in accreting pulsar-black hole binaries;Journal of Cosmology and Astroparticle Physics;2023-09-01

2. Dark fluxes from accreting black holes through several mechanisms;The European Physical Journal C;2022-03

3. Constraining galactic structures of mirror dark matter;Physical Review D;2020-09-15

4. Constraining Dissipative Dark Matter Self-Interactions;Physical Review Letters;2019-09-18

5. Early formation of supermassive black holes via dark matter self-interactions;Journal of Cosmology and Astroparticle Physics;2019-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3