Abstract
Abstract
Recent progress in calculating lepton density functions inside the proton and simulating lepton showers laid the foundations for precision studies of resonant leptoquark production at hadron colliders. Direct quark-lepton fusion into a leptoquark is a novel production channel at the LHC that has the potential to probe a unique parameter space for large masses and couplings. In this work, we build the first Monte Carlo event generator for a full-fledged simulation of this process at NLO for production, followed by a subsequent decay using the POWHEG method and matching to the parton showers utilizing HERWIG. The code can handle all scalar leptoquark models with renormalisable quark-lepton interactions. We then comprehensively study the differential distributions, including higher-order effects, and assess the corresponding theoretical uncertainties. We also quantify the impact of the improved predictions on the projected (HL-)LHC sensitivities and initiate the first exploration of the potential at the FCC-hh. Our work paves the way toward performing LHC searches using this channel.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献