Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network

Author:

Bhattacherjee Biplob,Mukherjee Swagata,Sengupta Rhitaja

Abstract

Abstract Sophisticated machine learning techniques have promising potential in search for physics beyond Standard Model in Large Hadron Collider (LHC). Convolutional neural networks (CNN) can provide powerful tools for differentiating between patterns of calorimeter energy deposits by prompt particles of Standard Model and long-lived particles predicted in various models beyond the Standard Model. We demonstrate the usefulness of CNN by using a couple of physics examples from well motivated BSM scenarios predicting long-lived particles giving rise to displaced jets. Our work suggests that modern machine- learning techniques have potential to discriminate between energy deposition patterns of prompt and long-lived particles, and thus, they can be useful tools in such searches.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Light long-lived particles at the FCC-hh with the proposal for a dedicated forward detector FOREHUNT and a transverse detector DELIGHT;Physical Review D;2024-07-31

2. Top-philic machine learning;The European Physical Journal Special Topics;2024-07-25

3. Search for electroweakinos in R-parity violating SUSY with long-lived particles at HL-LHC;Journal of High Energy Physics;2023-12-21

4. Fast neural network inference on FPGAs for triggering on long-lived particles at colliders;Machine Learning: Science and Technology;2023-11-29

5. Indian contributions to LHC theory;The European Physical Journal Special Topics;2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3