A singularity removal method for coupled 1D–3D flow models

Author:

Gjerde Ingeborg G.ORCID,Kumar Kundan,Nordbotten Jan M.

Abstract

AbstractIn reservoir simulations, the radius of a well is inevitably going to be small compared to the horizontal length scale of the reservoir. For this reason, wells are typically modelled as lower-dimensional sources. In this work, we consider a coupled 1D–3D flow model, in which the well is modelled as a line source in the reservoir domain and endowed with its own 1D flow equation. The flow between well and reservoir can then be modelled in a fully coupled manner by applying a linear filtration law. The line source induces a logarithmic-type singularity in the reservoir pressure that is difficult to resolve numerically. We present here a singularity removal method for the model equations, resulting in a reformulated coupled 1D–3D flow model in which all variables are smooth. The singularity removal is based on a solution splitting of the reservoir pressure, where it is decomposed into two terms: an explicitly given, lower-regularity term capturing the solution singularity and some smooth background pressure. The singularities can then be removed from the system by subtracting them from the governing equations. Finally, the coupled 1D–3D flow equations can be reformulated so they are given in terms of the well pressure and the background reservoir pressure. As these variables are both smooth (i.e. non-singular), the reformulated model has the advantage that it can be approximated using any standard numerical method. The reformulation itself resembles a Peaceman well correction performed at the continuous level.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3