Model-based characterization of permeability damage control through inhibitor injection under parametric uncertainty

Author:

Mahmudova Ayisha,Borsi Iacopo,Porta Giovanni MicheleORCID

Abstract

AbstractDamage in subsurface formations caused by mineral precipitation decreases the porosity and permeability, eventually reducing the production rate of wells in plants producing oil, gas or geothermal fluids. A possible solution to this problem consists in stopping the production followed by the injection of inhibiting species that slow down the precipitation process. In this work we model inhibitor injection and quantify the impact of a set of model parameters on the outputs of the system. The parameters investigated concern three key factors contributing to the success of the treatment: i) the inhibitor affinity, described by an adsorption Langmuir isotherm, ii) the concentration and time related to the injection and iii) the efficiency of the inhibitor in preventing mineral precipitation. Our simulations are set in a stochastic framework where these inputs are characterized in probabilistic terms. Forward simulations rely on a purpose-built code based on finite differences approximation of the reactive transport setup in radial coordinates. We explore the sensitivity diverse outputs, encompassing the well bottom pressure and space-time scales characterizing the transport of the inhibitor. We find that practically relevant output variables, such as inhibitor lifetime and well bottom pressure, display a diverse response to input uncertainties and display poor mutual dependence. Our results quantify the probability of treatment failure for diverse scenarios of inhibitor-rock affinity. We find that treatment optimization based on single outputs may lead to high failure probability when evaluated in a multi-objective framework. For instance, employing an inhibitor displaying an appropriate lifetime may fail in satisfying criteria set in terms of well-bottom pressure history or injected inhibitor mass.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3