Surrogate-assisted distributed swarm optimisation for computationally expensive geoscientific models

Author:

Chandra RohitashORCID,Sharma Yash Vardhan

Abstract

AbstractEvolutionary algorithms provide gradient-free optimisation which is beneficial for models that have difficulty in obtaining gradients; for instance, geoscientific landscape evolution models. However, such models are at times computationally expensive and even distributed swarm-based optimisation with parallel computing struggle. We can incorporate efficient strategies such as surrogate-assisted optimisation to address the challenges; however, implementing inter-process communication for surrogate-based model training is difficult. In this paper, we implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture. We first test the framework on a set of benchmark optimisation problems and then apply to a geoscientifc model that features landscape evolution model. Our results demonstrate very promising results for benchmark functions and the Badlands landscape evolution model. We obtain a reduction in computationally time while retaining optimisation solution accuracy through the use of surrogates in a parallel computing environment. The major contribution of the paper is in the application of surrogate-based optimisation for geoscientific models which can in the future help in better understanding of paleoclimate and geomorphology.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3