Experimental Study on the Effect of Extreme Waves on a LNG Carrier

Author:

Klein Marco,Wang Shan,Clauss Günther,Guedes Soares C.

Abstract

AbstractThis paper presents a comprehensive experimental study on the effect of extreme waves on a LNG carrier. The LNG carrier model was equipped with a variety of sensors to measure motions, green water height on deck as well as local and global loads. Experiments in transient wave packets provided the general performance in waves in terms of response amplitude operators and were accompanied by tests in regular waves with two different wave steepness. These tests allowed detailed insights into the nonlinear behavior of the vertical wave bending moment in steep waves showing that green water on deck can contribute to a decrease of vertical wave bending moment. Afterwards, systematic model tests in irregular waves were performed to provide the basis for statistical analysis. It is shown that the generalized extreme value distribution model is suitable for the estimation of the extreme peak values of motions and loads. Finally, model tests in tailored extreme wave sequences were conducted comparing the results with the statistical analysis. For this purpose, analytical breather solutions of the nonlinear Schrödinger equation were applied to generate tailored extreme waves of certain critical wave lengths in terms of ship response. Besides these design extreme waves, the LGN carrier was also investigated in the model scale reproduction of the real-world Draupner wave. By comparing the motions, vertical wave bending moment, green water column and slamming pressures it is concluded that the breather solutions are a powerful and efficient tool for the generation of design extreme waves of certain critical wave lengths for wave/structure investigations on different subjects.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Behavior of a Chemical Tanker in Extreme Waves;Journal of Marine Science and Application;2024-08-02

2. Frequency-Domain 3D Computer Program for Predicting Motions and Loads on a Ship in Regular Waves;Journal of Marine Science and Application;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3