Rigid-Body Analysis of a Beveled Shape Structure in Regular Waves Using the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) Method

Author:

Hikmatullah Sahib Siti Ayishah Thaminah,Ramli Muhammad Zahir,Azman Muhammad Afiq,Abd Rahman Muhammad Mazmirul,Miskon Mohd Fuad,Ariffin Effi Helmy,Jeofry Muhammad Hafeez,Yunus Kamaruzzaman

Abstract

AbstractIn many cases of wave structure interactions, three-dimensional models are used to demonstrate real-life complex environments in large domain scales. In the seakeeping context, predicting the motion responses in the interaction of a long body resembling a ship structure with regular waves is crucial and can be challenging. In this work, regular waves interacting with a rigid floating structure were simulated using the open-source code based on the weakly compressible smoothed particle hydrodynamics (WCSPH) method, and optimal parameters were suggested for different wave environments. Vertical displacements were computed, and their response amplitude operators (RAOs) were found to be in good agreement with experimental, numerical, and analytical results. Discrepancies of numerical and experimental RAOs tended to increase at low wave frequencies, particularly at amidships and near the bow. In addition, the instantaneous wave contours of the surrounding model were examined to reveal the effects of localized waves along the structure and wave dissipation. The results indicated that the motion response from the WCSPH responds well at the highest frequency range (ω > 5.235 rad/s).

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Ocean Engineering

Reference34 articles.

1. Altomare C, Tafuni A, Domínguez JM, Crespo AJ, Gironella X, Sospedra J (2020) SPH simulations of real sea waves impacting a large-scale structure. Journal of Marine Science and Engineering 8(10):826. https://doi.org/10.3390/jmse8100826

2. Bishop RED, Price WG (1979) Hydroelasticity of ships. Cambridge University Press, Cambridge, UK, p 431

3. Cartwright B, Groenenboom PHL, McGuckin D (2004) Examples of ship motion and wash predictions by smoothed particle hydrodynamics (SPH). 9th Symposium on Practical Design of Ships and Other Floating Structures. Luebeck-Travemuende, Germany

4. Cercos-Pita JL, Bulian G, Souto-Iglesias A (2015). Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada, 1–11

5. Cerello Chapchap A (2015). Unstructured MEL modelling of non-linear 3D Ship hydrodynamics. PhD thesis, University of Southampton, Southampton, 11–170

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3