Abstract
Abstract
We compute modular Hamiltonians for excited states obtained by perturbing the vacuum with a unitary operator. We use operator methods and work to first order in the strength of the perturbation. For the most part we divide space in half and focus on perturbations generated by integrating a local operator J over a null plane. Local operators with weight n ≥ 2 under vacuum modular flow produce an additional endpoint contribution to the modular Hamiltonian. Intuitively this is because operators with weight n ≥ 2 can move degrees of freedom from a region to its complement. The endpoint contribution is an integral of J over a null plane. We show this in detail for stress tensor perturbations in two dimensions, where the result can be verified by a conformal transformation, and for scalar perturbations in a CFT. This lets us conjecture a general form for the endpoint contribution that applies to any field theory divided into half-spaces.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference35 articles.
1. P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].
2. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
3. E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
4. V. Rosenhaus and M. Smolkin, Entanglement entropy: a perturbative calculation, JHEP 12 (2014) 179 [arXiv:1403.3733] [INSPIRE].
5. V. Rosenhaus and M. Smolkin, Entanglement entropy for relevant and geometric perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献