Abstract
Abstract
Using known estimates for the kaon-antikaon transitions, the mean lifetime of the muon and the mean lifetime of the tau, we place new and stronger constraints on the scales of the multi-fractional theories with weighted and q-derivatives. These scenarios reproduce a quantum-gravity regime where fields live on a continuous spacetime with a scale-dependent Hausdorff dimension. In the case with weighted derivatives, constraints from the muon lifetime are various orders of magnitude stronger than those from the tau lifetime and the kaon-antikaon transitions. The characteristic energy scale of the theory cannot be greater than E
*
> 3 × 102 TeV, and is tightened to E
*
> 9 × 108 TeV for the typical value α = 1/2 of the fractional exponents in the spacetime measure. We also find an upper bound d
H
< 2.9 on the spacetime Hausdorff dimension in the ultraviolet. In the case with q-derivatives, the strongest bound comes from the tau lifetime, but it is about 10 orders of magnitude weaker than for the theory with weighted derivatives.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献