Interpretable tabular data generation

Author:

Zhang Yishuo,Zaidi Nayyar,Zhou Jiahui,Li Gang

Abstract

AbstractGenerative adversarial network () models have been successfully utilized in a wide range of machine learning applications, and tabular data generation domain is not an exception. Notably, some state-of-the-art models of tabular data generation, such as ,  , , etc. are based on models. Even though these models have resulted in superior performance in generating artificial data when trained on a range of datasets, there is a lot of room (and desire) for improvement. Not to mention that existing methods do have some weaknesses other than performance. For example, the current methods focus only on the performance of the model, and limited emphasis is given on the interpretation of the model. Secondly, the current models operate on raw features only, and hence they fail to exploit any prior knowledge on explicit feature interactions that can be utilized during data generation process. To alleviate the two above-mentioned limitations, in this work, we propose a novel tabular data generation model—GenerativeAdversarial Network modelling inspired fromNaiveBayes andLogisticRegression’s relationship ($${ { \texttt {GANBLR} } }$$ GANBLR ), which not only address the interpretation limitation of existing tabular -based models but provides capability to handle explicit feature interactions as well. Through extensive evaluations on wide range of datasets, we demonstrate $${ { \texttt {GANBLR} } }$$ GANBLR ’s superior performance as well as better interpretable capability (explanation of feature importance in the synthetic generation process) as compared to existing state-of-the-art tabular data generation models.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3