Property graph representation learning for node classification

Author:

Li Shu,Zaidi Nayyar A.,Du Meijie,Zhou Zhou,Zhang Hongfei,Li Gang

Abstract

AbstractGraph representation learning (graph embedding) has led to breakthrough results in various machine learning graph-based applications such as node classification, link prediction and recommendation. Many real-world graphs can be characterized as the property graphs, because besides the structure information, there exists rich property information related to each node in the graphs. Many existing graph representation learning methods—e.g. random walk-based methods like and , focus only on the structure of graph for learning the node embedding. Although graph representation learning based on neural networks (e.g. typical methods such as ) uses the property of nodes as the initial features of nodes and then aggregates feature information of the neighbours, their limitation is that the neighbourhood of a node is considered to be uniform—i.e. there is no way to differentiate among neighbours of a node when learning a node embedding. Additionally, their definition of neighbourhood is local, i.e. only nodes connected to the current node are considered as neighbours. Hence, those methods fail to capture implicit/latent relationships among nodes, which are implicit in the given structure. In this study, our aim is to improve the performance of graph representation learning methods on property graphs. We present a new framework called  ()—a graph representation learning framework to address above-mentioned limitations. Our proposed framework relies on the notion of latent neighbourhood, as well as systematic sampling of neighbouring nodes to obtain better representation of the nodes. The experimental results on five publicly available graph datasets demonstrate that outperforms state-of-the-art baselines for the task of node classification. We further evaluate the superiority of our proposed formulation by defining a novel quantitative metric to measure the usefulness of the sampled neighbourhood in the graph.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key R &D Program 2021

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3