Abstract
Abstract
We investigate the possibility that scalar leptoquarks generate consequential effects on the flavor-changing neutral-current decays of charmed hadrons into final states with missing energy "Image missing" carried away by either standard model or sterile neutrinos. We focus on scenarios involving the R2, $$ {\tilde{R}}_2 $$
R
˜
2
, and $$ {\overline{S}}_1 $$
S
¯
1
leptoquarks and take into account various pertinent constraints, learning that meson-mixing ones and those inferred from collider searches can be of significance. We find in particular that the branching fractions of charmed meson decays D →"Image missing", M = π, ρ, and Ds→"Image missing" and singly charmed baryon decays $$ {\Lambda}_c^{+} $$
Λ
c
+
→"Image missing" and Ξc→"Image missing" are presently allowed to attain the 10−7-10−6 levels if induced by R2 and that the impact of $$ {\tilde{R}}_2 $$
R
˜
2
is comparatively much less. In contrast, the contributions of $$ {\overline{S}}_1 $$
S
¯
1
, which couples to right-handed up-type quarks and the sterile neutrinos, could lead to branching fractions as high as order 10−3. This suggests that these charmed hadron decays might be within reach of the BESIII and Belle II experiments or future super charm-tau factories and could serve as potentially promising probes of leptoquark interactions with sterile neutrinos.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献