A differential representation of cosmological wavefunctions

Author:

Hillman AaronORCID,Pajer EnricoORCID

Abstract

Abstract Our understanding of quantum field theory rests largely on explicit and controlled calculations in perturbation theory. Because of this, much recent effort has been devoted to improve our grasp of perturbative techniques on cosmological spacetimes. While scattering amplitudes in flat space at tree level are obtained from simple algebraic operations, things are harder for cosmological observables. Indeed, computing cosmological correlation functions or the associated wavefunction coefficients requires evaluating a growing number of nested time integrals already at tree level, which is computationally challenging. Here, we present a new “differential” representation of the perturbative cosmological wavefunction in de Sitter spacetime that obviates this problem for a large class of phenomenologically relevant theories. Given any tree-level Feynman-Witten diagram, we give simple algebraic rules to write down a seed function and a differential operator that transforms it into the desired wavefunction coefficient for any scale-invariant, parity-invariant theory of massless scalars and gravitons with general boost-breaking interactions. In particular, this applies to large classes of phenomenologically relevant theories such as those described by the effective field theory of inflation or solid inflation. Trading nested bulk time integrals for derivatives on boundary kinematical data provides a great computational advantage, especially for processes involving many vertices.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference53 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3