Base Cation Mobility in Vineyard Soils of the Colli Albani Volcanic District (Central Italy)

Author:

Gaeta M.,Aldega L.,Astolfi M. L.,Bonechi B.,Pacheco P.,Perinelli C.

Abstract

AbstractThe quality of the Colli Albani volcanic soils has certainly contributed to the vine cultivars hence the name of one of the oldest wines (i.e., Alban wine). The alkali up to 15 wt%, SiO2 ≤ 52 wt% and the emplacement at high temperature (≤ 600 °C) are the bedrock features that have deeply influenced the soil-forming processes in the vineyards. However, the peculiar features of the Colli Albani soils are not well known. Field survey and textural, mineralogical, and chemical data obtained with SEM, EMP, XRD, and ICP-OES were used to characterize the vineyard soils of the Colli Albani. Leucite (Lct)-bearing soils and quartz (Qz)-bearing soils occur in the studied vineyard. The Qz-bearing soils represent more weathered volcanic material, depleted in primary minerals and enriched in clays, which show a lower cation exchange capacity (CEC) than the Lct-bearing soils. CEC is a misleading definition for the Colli Albani soils because the base cation mobility in the vineyard is independent from clay mineral enrichment in the soil. Actually, the release of K, Na, Ca, and Mg depends by (i) the complete dissolution of leucite and analcime, (ii) the oxy-reaction affecting the phlogopite, which releases K + Mg, and (iii) the incongruent dissolution of clinopyroxene characterized by the “gothic texture.” This texture highlights the capacity of clinopyroxene to release Ca and Mg in volcanic soils. Quantification of the texture and abundance of the primary minerals are mandatory for the management of the vineyard soils in the Colli Albani and, in general, it is significative for the vineyards in volcanic areas.

Funder

Sapienza Università di Roma

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3