Abstract
AbstractThis paper provides a sufficient condition for the existence of solutions for generalized Nash equilibrium problems in the infinite-dimensional setting and with a countable (possibly infinite) number of players. The result has been achieved as a consequence of a modified version of Michael’s selection theorem that works even when the range space is not metrizable and the set-valued map has not closed values.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference20 articles.
1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer-Verlag, Berlin, A Hitchhikers Guide (2001)
2. Alleche, B., Rădulescu, V.D.: Solutions and approximate solutions of quasi-equilibrium problems in Banach spaces. J Optim Theory Appl 170, 629–649 (2016). https://doi.org/10.1007/s10957-015-0854-1
3. Aubin, J.P.: Optima and Equilibria. Springer-Verlag, Berlin (1993)
4. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin, Set-Valued Maps and Viability Theory (1984)
5. Castellani, M., Giuli, M.: An existence result for quasiequilibrium problems in separable Banach spaces. J Math Anal Appl 425, 85–95 (2015). https://doi.org/10.1016/j.jmaa.2014.12.022
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献