Abstract
AbstractIn this paper, we use a geometrical approach to sharpen a lower bound given in [5] for the Lipschitz modulus of the optimal value of (finite) linear programs under tilt perturbations of the objective function. The key geometrical idea comes from orthogonally projecting general balls on linear subspaces. Our new lower bound provides a computable expression for the exact modulus (as far as it only depends on the nominal data) in two important cases: when the feasible set has extreme points and when we deal with the Euclidean norm. In these two cases, we are able to compute or estimate the global Lipschitz modulus of the optimal value function in different perturbations frameworks.
Funder
Ministerio de Ciencia, Innovación y Universidades
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference17 articles.
1. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Akademie-Verlag, Berlin 1982, and Birkhäuser, Basel (1983)
2. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Nashua (1997)
3. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, New York (2009)
4. Gisbert, M.J., Cánovas, M.J., Parra, J., Toledo, F.J.: Calmness of the optimal value in linear programming. SIAM J. Optim. 28, 2201–2221 (2018)
5. Gisbert, M.J., Cánovas, M.J., Parra, J., Toledo, F.J.: Lipschitz modulus of the optimal value in linear programming. J. Optim. Theory Appl. 182, 133–152 (2019)