Abstract
AbstractAn existence result for a generalized inequality over a possible unbounded domain in a finite-dimensional space is established. The proof technique allows to avoid any monotonicity assumption. We adapt a weak coercivity condition introduced in Castellani and Giuli (J Glob Optim 75:163–176, 2019) for a generalized game which extends an older one proposed by Konnov and Dyabilkin (J Glob Optim 49:575–577, 2011) for equilibrium problems. Our main result encompasses and generalizes several existence results for equilibrium, quasiequilibrium and fixed-point problems.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference20 articles.
1. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)
2. Bensoussan, A., Goursat, M., Lions, J.L.: Impulse control and stationary quasi-variational inequalities. C.R. Acad. Sci. Paris Sér. A 276, 1279–1284 (1973)
3. Bianchi, M., Pini, R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)
4. Bianchi, M., Pini, R.: A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31, 445–450 (2003)
5. Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria. Springer, Berlin (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献