Production of N-glycosylated alcohol dehydrogenase in Escherichia coli

Author:

Levarski ZdenkoORCID,Bírová StanislavaORCID,Hriňová KristinaORCID,Dlapová JohanaORCID,Struhárňanská EvaORCID,Levarská LenkaORCID,Turňa JánORCID,Stuchlík StanislavORCID

Abstract

AbstractN-glycosylation of recombinant proteins using bacterial glycosylation system has proven to be a valuable although developing tool ultimately applicable to various industries. When used for enzyme engineering, it offers the possibility of increased stability or immobilization route and thus increasing effectiveness of e.g. biotransformation or other biocatalysis procedures. One such promising enzyme is alcohol dehydrogenase (ADH) for use in redox biotransformation reactions. Given the current possibilities of recombinant enzyme production, including major advances in glycoengineering and glycoprotein production in bacterial organisms, the aim of this work was the production of thermotolerant ADH from Rhodococcus ruber (RrADH) in glycosylated form in Escherichia coli. We have successfully developed a dual plasmid expression system enabling glycosylation of target proteins utilizing a glyco-tag approach. We were able to produce RrADH in soluble form and at the same time we detected a bacterial glycan conjugated to RrADH as well as the activity of the enzyme. The glycan bound to recombinant enzyme can be used for oriented covalent immobilization of the enzyme, which would increase the potential for its practical application in biotransformation of various compounds.

Funder

Comenius University in Bratislava

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3