Easy to fabricate 3D metastructure for low-frequency vibration control

Author:

Gulzari MuhammadORCID,Ciochon Agnieszka,Kennedy John

Abstract

AbstractAs a burgeoning category of elastic metamaterials, 3D metastructures have garnered significant research attention for manipulating low-frequency acoustic and elastic waves. Bandgap engineering allows for the control of these waves across a subwavelength ultrawide frequency range. However, the manufacturing of these 3D structures poses a challenge, necessitating additional support materials for 3D-printed components, creating difficulties in mass production. In this study, we propose a novel lightweight 3D metastructure design that is easy to fabricate and provides a low-frequency subwavelength bandgap. We replaced conventional struts supporting heavy mass inclusions in typical designs with modified arch beams. This structural modification enables the easy and self-supporting manufacturing of 3D metastructure unit cells without the need for extra support material. Utilizing magnets and steel masses with bolts as hard inclusions, the magnet facilitates the quick assembly of the 3D metastructure, potentially facilitating mass manufacturing in practical applications. The wave dispersion and bandgap properties of the metastructure are investigated numerically, and experimental vibration tests are performed on the 3D-printed and assembled parts. The experimental results and numerical findings demonstrate robust vibration attenuation at low frequencies by the proposed 3D metastructure. The suggested, easy-to-fabricate 3D-metastructure design holds potential applications in low-frequency elastic-wave manipulation, including noise and vibration control.

Funder

Irish Research Council for Science, Engineering and Technology

Enterprise Ireland

University College Dublin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3