Abstract
AbstractNeurofibromatosis type 1 results from loss-of-functionNF1pathogenic variants (PVs). Up to 30% of allNF1PVs disrupt mRNA splicing, including deep intronic variants. Here, we retrospectively investigated the spectrum ofNF1deep intronic PVs in a cohort of 8,090 unrelated individuals from the University of Alabama at Birmingham (UAB) dataset with a molecularly confirmed neurofibromatosis type 1. All variants were identified through their effect on theNF1transcript, followed by variant characterization at the DNA-level. A total of 68 distinct variants, which were ≥ 20 nucleotides away from the closest exon–intron junction, were identified in 2.5% unrelated individuals with NF1 (200/8,090). Nine different pathogenic splice variants, identified in 20 probands, led to exonization of different parts of intron 30 [23.2] or 31 [23a]. The two majorNF1transcript isoforms, distinguished by the absence (type I) or presence (type II) of the alternatively spliced cassette exon 31 [23a], are equally expressed in blood in control individuals without NF1 or NF1-affected individuals carrying their PV not in the introns flanking exon 31 [23a]. By fragment and cloning analysis we demonstrated that the exonization of intron 31 [23a] sequences due to deep intronic PV predominantly affects theNF1isoform II. Seven additional (likely) pathogenicNF1deep intronic variants not observed in the UAB dataset were found by classification of 36 variants identified by a literature search. Hence, the unique list of these 75 deep intronic (likely) PVs should be included in any comprehensiveNF1testing strategy.
Funder
Children's Tumor Foundation
Department of Genetics, University of Alabama at Birmingham
Narodowe Centrum Badań i Rozwoju
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献