Design and power calculation of HLFC suction system for a subsonic short-range aircraft

Author:

Prasannakumar AdarshORCID,Wolff Johannes,Radespiel Rolf,Boermans Loek,Hühne Christian,Badrya Camli

Abstract

AbstractHybrid laminar flow control (HLFC) can be a possible solution for future sustainable energy-efficient aviation. The current study proposes a MATLAB-based numerical tool for the design of the suction system for an airfoil optimized for a subsonic short-range HLFC application. Considerable energy losses may occur when the air passes through the perforated metallic outer surface and the inner structure of the suction system. A semi-empirical approach is used to design a layout that provides a target suction velocity based on measured pressure losses through porous medium and substructures. Flowbench measurements were performed on 3D-printed internal core test samples to quantify the pressure losses that can be used to create a lower pressure below the porous sheet matching the target suction velocity. The actual suction realized on the airfoil using this substructure concept has a discrete nature that increases with the distance between two adjacent walls. Finally, the suction system’s power requirement is calculated. The power requirement for distributed suction accounts for the pressure loss characteristics of the porous material, the internal core structure, and throttling holes. However, the study does not include the ducting losses from the substructure to the compressor. Approximately 80% of the total suction power is utilized to eject the sucked air back to the freestream conditions for a system with a compressor and propulsive system efficiency equal to one. The study analyses the performance of the designed internal core layout to different flight conditions and addresses the suction power requirement variation with lift coefficient and flight altitude.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Reference31 articles.

1. Schrauf, G.: Status and perspectives of laminar flow. Aeronaut. J. 109(1102), 639–644 (2005). https://doi.org/10.1017/S000192400000097X

2. Somers, D.M.: Subsonic Natural-Laminar-Flow Airfoils. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-2872-1_4

3. Schrauf, G., Frhr. von Geyr, H.: Simplified hybrid laminar flow control for transport aircraft. In: ECCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering, pp. 3831–3842 (2012)

4. Joslin, R.: Overview of laminar flow control. NASA technical paper. NASA (1998). https://books.google.de/books?id=UgcVAQAAIAAJ

5. Beck, N., Landa, T., Seitz, A., Boermans, L., Liu, Y., Radespiel, R.: Drag reduction by laminar flow control. energies 11(1) (2018). https://doi.org/10.3390/en11010252. https://www.mdpi.com/1996-1073/11/1/252

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3