Effects of acute warming on cardiac and myotomal sarco(endo)plasmic reticulum ATPase (SERCA) of thermally acclimated brown trout (Salmo trutta)

Author:

Vornanen MattiORCID

Abstract

AbstractAt high temperatures, ventricular beating rate collapses and depresses cardiac output in fish. The role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in thermal tolerance of ventricular function was examined in brown trout (Salmo trutta) by measuring heart SERCA and comparing it to that of the dorsolateral myotomal muscle. Activity of SERCA was measured from crude homogenates of cold-acclimated (+ 3 °C, c.a.) and warm-acclimated (+ 13 °C, w.a.) brown trout as cyclopiazonic acid (20 µM) sensitive Ca2+-ATPase between + 3 and + 33 °C. Activity of the heart SERCA was significantly higher in c.a. than w.a. trout and increased strongly between + 3 and + 23 °C with linear Arrhenius plots but started to plateau between + 23 and + 33 °C in both acclimation groups. The rate of thermal inactivation of the heart SERCA at + 35 °C was similar in c.a. and w.a. fish. Activity of the muscle SERCA was less temperature dependent and more heat resistant than that of the heart SERCA and showed linear Arrhenius plots between + 3 and + 33 °C in both c.a. and w.a. fish. SERCA activity of the c.a. muscle was slightly higher than that of w.a. muscle. The rate of thermal inactivation at + 40 °C was similar for both c.a. and w.a. muscle SERCA at + 40 °C. Although the heart SERCA is more sensitive to high temperatures than the muscle SERCA, it is unlikely to be a limiting factor for heart rate, because its heat tolerance, unlike that of the ventricular beating rate, was not changed by temperature acclimation.

Funder

Academy of Finland

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3