Entanglement entropy of two disjoint intervals and spin structures in interacting chains in and out of equilibrium

Author:

Marić VanjaORCID,Bocini Saverio,Fagotti Maurizio

Abstract

Abstract We take the paradigm of interacting spin chains, the Heisenberg spin-$$ \frac{1}{2} $$ 1 2 XXZ model, as a reference system and consider interacting models that are related to it by Jordan-Wigner transformations and restrictions to sub-chains. An example is the fermionic analogue of the gapless XXZ Hamiltonian, which, in a continuum scaling limit, is described by the massless Thirring model. We work out the Rényi-α entropies of disjoint blocks in the ground state and extract the universal scaling functions describing the Rényi-α tripartite information in the limit of infinite lengths. We consider also the von Neumann entropy, but only in the limit of large distance. We show how to use the entropies of spin blocks to unveil the spin structures of the underlying massless Thirring model. Finally, we speculate about the tripartite information after global quenches and conjecture its asymptotic behaviour in the limit of infinite time and small quench. The resulting conjecture for the “residual tripartite information”, which corresponds to the limit in which the intervals’ lengths are infinitely larger than their (large) distance, supports the claim of universality recently made studying noninteracting spin chains. Our mild assumptions imply that the residual tripartite information after a small quench of the anisotropy in the gapless phase of XXZ is equal to − log 2.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3