Artificial proto-modelling: building precursors of a next standard model from simplified model results

Author:

Waltenberger WolfgangORCID,Lessa André,Kraml SabineORCID

Abstract

Abstract We present a novel algorithm to identify potential dispersed signals of new physics in the slew of published LHC results. It employs a random walk algorithm to introduce sets of new particles, dubbed “proto-models”, which are tested against simplified-model results from ATLAS and CMS (exploiting the SModelS software framework). A combinatorial algorithm identifies the set of analyses and/or signal regions that maximally violates the SM hypothesis, while remaining compatible with the entirety of LHC constraints in our database. Demonstrating our method by running over the experimental results in the SModelS database, we find as currently best-performing proto-model a top partner, a light-flavor quark partner, and a lightest neutral new particle with masses of the order of 1.2 TeV, 700 GeV and 160 GeV, respectively. The corresponding global p-value for the SM hypothesis is pglobal 0.19; by construction no look-elsewhere effect applies.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference136 articles.

1. https://en.wikipedia.org/wiki/Inverse_problem

2. P. Binetruy, G.L. Kane, B.D. Nelson, L.-T. Wang and T.T. Wang, Relating incomplete data and incomplete theory, Phys. Rev. D 70 (2004) 095006 [hep-ph/0312248] [INSPIRE].

3. N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190] [INSPIRE].

4. B. Knuteson and S. Mrenna, BARD: interpreting new frontier energy collider physics, hep-ph/0602101 [INSPIRE].

5. C.F. Berger, J.S. Gainer, J.L. Hewett, B. Lillie and T.G. Rizzo, General features of supersymmetric signals at the ILC: solving the LHC inverse problem, Phys. Rev. D 80 (2009) 095018 [arXiv:0712.2965] [INSPIRE].

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3